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Abstract: Since the behavior of biomolecules can be sensitive to temperature, the ability to
accurately calculate and control the temperature in molecular dynamics (MD) simulations is
important. Standard analysis of equilibrium MD simulationsseven constant-energy simulations
with negligible long-term energy driftsoften yields different calculated temperatures for different
motions, however, in apparent violation of the statistical mechanical principle of equipartition of
energy. Although such analysis provides a valuable warning that other simulation artifacts may
exist, it leaves the actual value of the temperature uncertain. We observe that Tolman’s
generalized equipartition theorem should hold for long stable simulations performed using
velocity-Verlet or other symplectic integrators, because the simulated trajectory is thought to
sample almost exactly from a continuous trajectory generated by a shadow Hamiltonian. From
this we conclude that all motions should share a single simulation temperature, and we provide
a new temperature estimator that we test numerically in simulations of a diatomic fluid and of
a solvated protein. Apparent temperature variations between different motions observed using
standard estimators do indeed disappear when using the new estimator. We use our estimator
to better understand how thermostats and barostats can exacerbate integration errors. In
particular, we find that with large (albeit widely used) time steps, the common practice of using
two thermostats to remedy so-called hot solvent-cold solute problems can have the counter-
intuitive effect of causing temperature imbalances. Our results, moreover, highlight the utility of
multiple-time step integrators for accurate and efficient simulation.

1. Introduction

Fueled by algorithmic improvements and by the growth of
computer power, molecular dynamics (MD) simulations are
making increasingly important scientific contributions to
biology. There is considerable interest in further accelerating
simulations and improving their accuracy. Since most
biomolecular simulations are of classical systems at equi-
librium, one useful measure of accuracy is the extent to which

the distribution of energy among different degrees of freedom
is consistent with the equipartition theorem of statistical
mechanics.1 The most familiar consequence of equipartition
is that each particle in an equilibrium system has an average
kinetic energy of kBT/2 (where T is the temperature of the
system and kB is the Boltzmann constant) arising from its
motion in each spatial dimension. This result does not depend
on details of the potential energy function (the “force field”).
In biomolecular simulations, thermalization of kinetic energy
typically occurs on a subnanosecond time scale,2,3 so sub-
stantial deviations from equipartition in long simulations are
likely symptoms of a problem with the simulation methodol-
ogy. One symptom, whose presence is often tested for in
practice, is a difference between the temperature of the
solvent and solute, often referred to as a hot solVent-cold
solute problem.4 A hot solvent-cold solute problem could
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have many potential causes, and testing for the presence of
this symptom (and similar deviations from equipartition) has
helped to diagnose underlying problems in barostats,5

thermostats6,7 and in approximate treatments of long-range
electrostatic8-10 and dispersive11 interactions and has led to
various methodological improvements.

Here, we investigate how truncation errors arising from
the finite simulation time step δt affect equipartition and the
calculation of temperature. We mainly focus on the widely
used velocity-Verlet integrator,12,13 but the basic theoretical
finding applies to symplectic integrators in general. To help
rule out the well-documented causes of a breakdown of
equipartition noted above,5-11 we initially focus on constant-
energy simulations that are stable (that is, those that show
little long-term energy drift). Fortunately, this is achievable
with currently typical simulation parameters, so the results
are directly relevant in practice. Although not as dramatic
as hot solvent-cold solute problems arising from other
origins, the effects of truncation errors can still be substantial.
In Figure 1, for example, the temperature of a protein and
the surrounding water molecules are shown as a function of
simulation time. The temperature of the protein is seen to
be lower than that of the water by about 6 K.

Such results are widely understood to expose real simula-
tion artifacts originating in the finite integration time step,
but it is unclear whether they reflect any actual temperature
differences or even whether temperature has a precise
definition for δt > 0. In this paper, we show how the
definition of temperature generalizes to δt > 0 and show that,
in examples like the one above, different motions do share
a single temperature. Our reasoning is straightforward. The
velocity-Verlet integrator is symplectic14 and is, thus, thought
to sample positions and momenta almost exactly from a
trajectory generated by a modified Hamiltonian,15 often
called a shadow Hamiltonian. Since particle momenta do
not enter this Hamiltonian quadratically, the equipartition
relation is not applicable. We expect, however, that general-
ized equipartition,1,16 which holds for a broad class of

Hamiltonians, will be applicable to the shadow Hamiltonian.
This implies the existence of a single well-defined simulation
temperature for all motions that is given by the product of
momentum and velocity and that is easily evaluated in practice.

To avoid potential confusion at the outset and to clarify
why estimating temperature from the product of momentum
p and velocity V (a “pV formula”) is distinct from previous
approaches, we emphasize the finding17 that when δt >
0, V * p/m, where m is mass; we also explain more carefully
what we mean here by velocity and momentum. By
momentum, we mean the canonical momentum that enters
the shadow Hamiltonian. This is directly provided by the
integrator. For velocity Verlet, the momentum is simply the
usual on-step velocity-Verlet momentum. By velocity, we
mean the instantaneous rate of change of position on the
underlying trajectory generated by the shadow Hamiltonian.
The integrator directly yields positions (and momenta) but
not their time derivatives, and the velocity cannot be exactly
expressed in terms of a finite number of positions and
momenta. In particular, as noted above, V * p/m, even though
p/m might commonly be called a velocity; for velocity Verlet,
p/m (often called the on-step “velocity-Verlet velocity”)
differs from the velocity by O(δt

2). Thus if only the on-step
velocity-Verlet momenta are used to evaluate temperature
(a “p2 formula,” as used in Figure 1), then temperatures will
also be in error by order δt

2. Nevertheless, it is straightfor-
ward to construct more accurate velocity estimators.18 One
simple approach is a polynomial interpolation over positions
sampled at different times; the velocity estimator appearing
in Beeman’s version of Verlet13 is a well-known special case,
and unsurprisingly it is possible to increase the accuracy
further by interpolating over more positions. Perhaps coun-
terintuitively, however, our pV formula shows that having
obtained an accurate estimate of V, the temperature follows
via the product pV (even though p/m may itself be a poor
estimator of V) and not the square of the accurately estimated
velocity (a “V2 formula”), as appears to be typically
assumed.18,19 Indeed, as will become clearer below, if
temperature is estimated using highly accurate velocities
alone, a hot solvent-cold protein problem, like that shown
in Figure 1, will simply be replaced by a cold solvent-hot
protein problem of similar magnitude.

We test our theoretical conclusions numerically for two
systems. First, we calculate the temperatures of vibrational
and translational motion in a diatomic fluid as a function of
δt. We find that p2 and V2 temperature estimates each yield
substantially different values for the two motions, but the
pV estimator shows that the temperatures of these motions
are in fact identical within a very small statistical error. Thus
although conventional equipartition (by which we mean the
usual, as opposed to generalized, equipartition relation)
breaks down, generalized equipartition holds, and a well-
defined temperature exists. Using analytical estimates, we
confirm that although deviations from conventional equi-
partition do not reflect temperature differences, they do reflect
the real difference between the Hamiltonian and its shadow.
Second, we perform all-atom MD simulations of ubiquitin
in explicit solvent, examining the temperature of the different
quasiharmonic protein motions and comparing the overall

Figure 1. A hot solvent-cold protein problem. Temperatures
of the protein ubiquitin (blue points) and water solvent (red
points) are shown as a function of simulation time. Data were
taken from an all-atom constant energy simulation that used
velocity-Verlet integration with a 2 fs time step and bonds to
hydrogen constrained; more details are given in Section 3.2.
Temperatures were evaluated using the squares of the on-
step velocity-Verlet momenta. The lines denote the average
temperature values over the entire simulation.
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temperature of the protein to the solvent. Again, we find
different motions to share a single temperature, even when
conventional equipartition is not satisfied.

In addition to providing an accurate estimator for simulation
temperature and using it to confirm that generalized equipartition
is satisfied in stable simulations, we use it to investigate how
integration errors can be exacerbated by use of a thermostat or
barostat. This danger has been recently highlighted;18 we discuss
it in light of the new estimator and demonstrate some potential
pitfalls. Notably, we use our estimator to show that unless the
time step is chosen to be sufficiently small, use of multiple
thermostats can lead to a breakdown of generalized equipartition
with genuine temperature imbalances and with heat flow in the
system. The commonly used remedy of hot solvent-cold solute
problems in which one thermostat is applied to protein and
another to the solvent, in an effort to maintain them at the same
temperature, can thus potentially have a counterintuitive, and
counterproductive, effect.

The root cause of all the simulation artifacts investigated
in this paper is truncation error. Satisfying generalized
equipartition by no means implies that the simulation is free
from this source of artifacts; indeed, the breakdown of
conventional equipartition signals their existence. Reducing
the time step naturally reduces truncation error and brings
the different temperature estimators into agreement, but due
to the computational expense of MD, this solution is often
unpalatable. One promising approach to reduce errors is to
modify the integration scheme. Using the deviations from
conventional equipartition as a criterion, we show, for
example, that for our test systems, the reversible reference
system propagation algorithm (r-RESPA) multiple-time step
scheme20 can achieve the benefit of a reduced velocity-Verlet
time step at a fraction of the computational expense.

2. Theory

To generalize the definition of simulation temperature to δt >
0, we make use of two established concepts: generalized
equipartition and the shadow Hamiltonian, which we briefly
review in Sections 2.1 and 2.2, respectively. In Section 2.3, we
give our definition of simulation temperature for δt > 0. Using
the harmonic oscillator as an analytically tractable example, we
quantify errors in some conventional estimates of simulation
temperature in Section 2.4. Appendix A describes how to
estimate temperatures of motions that involve multiple atoms,
such as quasiharmonic motions in proteins. The effect of
integration errors on simulation pressure is discussed in Ap-
pendix B.

2.1. Generalized Equipartition. Generalized equipartition
(eqs 2 and 3) was derived by Tolman,16 who considered the
following canonical ensemble average for the Hamiltonian
system H(p,q):

We use xi to label an element of either position or
momentum. Nf is the number of positional degrees of

freedom, � ) 1/kBT, and Q ) ∫ dx exp(-�H). Under the
relatively mild requirement that the surface (second) term
on the right-hand side vanishes, use of Hamilton’s equations
leads to the exact result:

where qi and pi label individual positions and conjugate
momenta respectively, and the dot denotes a time derivative.
The velocities are

We have presented Tolman’s original proof for the
canonical (NVT) ensemble, because of its brevity. For the
microcanonical (NVE) ensemble, which is relevant to our
development below, the proof is described elsewhere;1 the
result is identical, apart from an i-independent correction of
order Nf

-1.21 The use of periodic boundary conditions means
linear momentum is often conserved in simulations. This
constraint leads to a modification to eq 2 of order N-1, where
N is the number of particles in the simulation.21,22 We ignore
effects of this magnitude except where explicitly noted. More
importantly, if qi is a periodic coordinate, then the second
term on the right-hand side of eq 1 may be nonzero, in which
case eq 3 will not hold. A commonly encountered example
is for simulations using periodic boundary conditions in
which the position qi of an atom is restricted to values that
lie within the simulation box; assuming that the Hamiltonian
is translationally invariant, then knowledge of a single
positional coordinate qi provides no information about ṗi,
so evidently these quantities are uncorrelated, and 〈qiṗi〉 )
〈qi〉 〈ṗi〉 ) 0, as may also be demonstrated by explicitly
evaluating the second term on the right-hand side of eq 1.

In MD simulations we usually use a Hamiltonian of the
form

where q denotes atom positions, m is the diagonal mass
matrix (mij ) δijmi), and U is the force field. Since H0

contains only quadratic terms in pi, eq 4 shows thatsfor
exact trajectoriessvelocities and momenta are related through
miVi ) pi. Eq 2 thus reduces to the familiar form of kinetic
energy equipartition:

where the 0 is used to emphasize that a Hamiltonian of the
form H0 is assumed. The shadow Hamiltonian corresponding
to H0 need not take this form, however, as we review below.

MD simulations are often performed subject to holonomic
constraints, for example, to keep certain bond lengths fixed.
Since eq 2 assumes an unconstrained ensemble average, it
does not directly apply. In principle, one can construct a new
Hamiltonian describing the dynamics of a system subject to

〈xi
∂H
∂xi

〉 ) 1
Q ∫ dx(-xi

� )∂e-�H

∂xi

) kBT - 1
�Q ∫ dx1, ...,dxi-1dxi+1, ...,dx2Nf

[xie
-�H]xi

min
xi

max

(1)

〈piq̇i〉 ) kBT (2)

-〈qiṗi〉 ) kBT (3)

Vi ≡ q̇i )
∂H
∂pi

(4)

H0(p, q) ) U(q) + 1
2

pTm-1p (5)

〈miVi
2〉0 ) kBT (6)

〈pi
2/mi〉0 ) kBT (7)
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Nc constraints by finding 3N - Nc unconstrained generalized
positions and their conjugate momenta; eq 2 will then apply.
For our purposes, however, it is sufficient to establish two
results. First, for any subset A of position coordinates that
are not involved in a constraint with position coordinates
outside that subset, we findsafter some algebrasthat a result
similar to eq 2 holds

Here IA contains the indices of the coordinates in A, and
Nf;A - Nc;A is the number of positional degrees of freedom
in A minus the number of constraints to which they are
subject. Second, in the common case where the constraints
are functions only of interatomic distance, it is straightfor-
ward to identify some unconstrained generalized coordinates.
Formally, a subset B of the positions in A may be identified
and transformed to any linear average coordinate QB )
∑i∈IBwiqi, with ∑i∈IBwi ) 1 and Nf;B - 1 relative coordinates,
such that QB is unconstrained. Thus

where VB ) Q̇B and PB ) ∑i∈IBpi is the momentum conjugate
to QB. Typically, QB will be a center-of-mass coordinate.
Although eqs 8 and 9 are intuitively obvious, we mention
them here to make explicit that, like eq 2, they hold without
need to assume a Hamiltonian of the form H0. Only when a
Hamiltonian of form H0 is assumed can they be written in
terms of squared velocities or momenta, as in eqs 6 and 7.

2.2. Shadow Hamiltonian. We focus on the velocity-
Verlet integration of H0, for which

where the elements of the force vector are Fi ) -∂U/∂qi, as
usual. This integration scheme is symplectic, a property that
can be maintained in the presence of holonomic constraints.23

A symplectic integrator is one for which the mapping (p(t),
q(t)) f (p(t + δt), q(t + δt)) is a canonical transformation,
just as it is for continuous Hamiltonian dynamics. This
suggests there might be a Hamiltonian whose exact dynamics
generates the flow (p(t), q(t)) f (p(t + δt), q(t + δt)). This
shadow Hamiltonian Hδt is expected to be similar but not
equal to H0, whose approximate dynamics generates the same
flow. Finding Hδt is a problem of backward error analysis.15,24

One may construct an asymptotic expansion for Hδt by adding
terms to H0 to create a Hamiltonian whose exact dynamics
matches that of eqs 10 and 11 order by order in δt. Since
velocity Verlet is symmetric (reversing the sign of the time
step gives the inverse method), only even powers of δt appear

It is possible to construct accurate numerical approximations
for the correction terms;25 we note that an estimator (eq 68
of ref 26) for δH(2) with errors of order δt

2 (and thus an
estimator of Hδt with errors of order δt

4) has existed for many
years in the CHARMM code,27 where it is called a “high-
frequency correction.” Except for particularly simple forms
of H0, there is no guarantee eq 12 converges, but numerical
tests to high orders have found the conservation of the
shadow Hamiltonian to improve when successively higher
order terms are included.25

The second-order term in eq 12 is17

where the Hessian has elements Kij ) ∂2U/∂qi∂qj. Since K
depends on q, even at second-order, Hδt has a different form
than H0, and the velocities and momenta are thus no longer
related through a simple mass factor.17 Specifically, eq 4
gives

2.3. Equipartition for the Shadow Hamiltonian. The
nontrivial relationship between velocities and momenta (eq
14) for the shadow Hamiltonian has immediate consequences
for equipartition. In particular, eq 2 clearly no longer
precisely reduces to eqs 6 and 7. This suggests that the
simulation temperature should be defined using T ≡ TpV,
where

and the δt subscript emphasizes that the ensemble average
depends on the time step through the shadow Hamiltonian.
With this definition, the temperature for all motions {i} will
be the same, if generalized equipartition is satisfied. The
alternative quantities

differ from T by an amount O(δt
2). We use the terms pV, p2,

or V2 formula to refer to any method of calculating the
temperature that is in the spirit of eqs 15, 16, or 17,
respectively. (The p2 formula corresponds to the usual
method of obtaining temperature when using velocity-Verlet
integration, that is using only on-step momenta provided by
the integrator.) As demonstrated below, it is also possible
to calculate the temperature, making use of eq 3, provided
appropriate (nonperiodic) coordinates are used. Note that the
temperature, as defined in eq 15, is a property of the
distribution sampled during the simulation, rather than a
property of the desired distribution that would have been
sampled in the small-time-step limit. Statistical reweigh-
ting,24,28 while a powerful tool to infer the desired ensemble
from the one sampled, thus cannot be directly applied to
sampled p2 values to obtain T ≡ TpV. The temperature one
would obtain by such a reweighting is instead the (known)

∑
i∈IA

〈piVi〉 ) (Nf;A - Nc;A)kBT (8)

〈PBVB〉 ) kBT (9)

q(t + δt) ) q(t) + δtm
-1p(t) +

δt
2

2
m-1F(t) (10)

p(t + δt) ) p(t) +
δt

2
(F(t) + F(t + δt)) (11)

Hδt
(p, q) ) H0(p, q) +

δt
2

2!
δH(2)(p, q) +

δt
4

4!
δH(4)(p, q) + ...

(12)

δH(2) ) 1
6

(m-1p)TK(m-1p) - 1
12

FTm-1F (13)

v ) m-1p +
δt

2

6
m-1Km-1p + O(δt

4) (14)

kBTpV ) 〈piVi〉δt
(15)

kBTp2 ) 〈pi
2/mi〉δt

(16)

kBTV2 ) 〈miVi
2〉δt

(17)
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temperature of the desired ensemble. This has been explicitly
demonstrated (for NVT simulations using a Nosé-Poincaré
thermostat) in numerical experiments where reweighting T p2

accurately recovered the thermostat’s target temperature.24

To calculate the temperature from eq 15, one needs to
calculate both velocities and momenta. The momenta p are,
by construction, directly available at every step of the
simulation. The velocities v ≡ q̇ * m-1p are not but can be
accurately estimated from several consecutive positions via
interpolation, as described in Section 3.3. Since the standard
terminology we have adopted can lead to confusion, we
emphasize that velocity-Verlet samples momentasspeci-
fically, the canonical momenta of the shadow Hamiltonians
and not velocities. Naturally, this state of affairs is unaltered
if eqs 10 and 11 are explicitly written in terms of what are
called velocity-Verlet velocities, vvv ≡ m-1p. As its defini-
tion shows, vvv is simply and precisely related to the momenta
but differs from the velocities v ≡ q̇, when δt > 0.

In Section 2.1, we made a few comments on the ap-
plicability of the generalized equipartition formula. Here we
make some related comments on the applicability of eq 15
to MD simulations. First, eq 15 was derived assuming that
a shadow Hamiltonian exists, i.e., that the dynamics gener-
ated by the integrator is the exact dynamics of some
underlying Hamiltonian. This is strictly true for certain simple
forms of H0 but not for biomolecular force fields, where the
asymptotic expansion eq 12 does not converge. For simula-
tions with small energy drift, however, we find much
encouragement in earlier work25 that Hamiltonians defined
by truncating eq 12 can describe the dynamics generated by
the integrator extremely accurately. Nevertheless, an impor-
tant part of this paper is to test numerically whether
generalized equipartition holds. Second, in addition to the
usual statistical error, estimators for the temperature, based
on eq 15, contain errors from the velocity interpolation. As
discussed further below, nth-order polynomial interpolation
essentially leads to O(δt

n) errors, thus sufficiently high-order
interpolation can make the errors in the estimated temperature
negligible for practical purposes. Third, thermostats and
barostats used in MD simulations may entail modification
to the equations of motion such that they are no longer of
Hamiltonian form (this is the case for both Nosé-Hoover29

and Berendsen30 thermostats). Although a rigorous analysis
of such effects on eq 15 appears possible for some
thermostats, in this paper we make the simplifying assump-
tion that any modifications can be ignored. This is intuitively
reasonable for thermostats coupled to a large number of
degrees of freedom and is borne out by our numerical results
on ubiquitin, which are very similar for NVE and NVT
simulations. Similarly, although we focus on straightforward
MD simulations here, we expect eq 15 to be relevant to
Monte Carlo sampling methods that use molecular dynamics,
such as parallel tempering.31 Finally, we note that, while eq
15 was derived assuming a symplectic integrator, milder
conditions are sufficient. In particular, if the integrator
conserves phase-space volume and has a conserved quantity
H̃δt (p, q), which need not be a Hamiltonian, then eq 15 will
hold if ∂H̃δt/∂pi ) Vi.

2.4. Harmonic Oscillator. We briefly illustrate the above
results for the simple case of a one-dimensional harmonic
oscillator with mass m and spring constant k:

As is well-known (for example, see ref 17), the shadow
Hamiltonian is a harmonic oscillator with modified mass and
spring constant,

The modified parameters mδt and kδt are given by

where the modified frequency ωδt ) (kδt/mδt)
1/2 is

Both the shadow mass and spring constant decrease with
increasing time step, and vanish as ωδtf 2, which coincides
with the stability limit of the integrator.

Suppose that the harmonic oscillator is weakly coupled to a
heat bath at temperature T. The quantities T pV, T p2, and T V2

defined in the previous subsection are related to T as follows

Whereas T pV correctly shows the oscillator to have the same
temperature as the bath, T p2 underestimates and T V2 overesti-
mates the temperature by the same factor. The disagreement
between the three estimators provides a valuable indication of
the magnitude of truncation error. In addition, we may also use
eq 3; if we define kBT qṗ ) -〈qṗ〉δt and kBT qF ) 〈q(kq)〉δt, then

Finally, since some codes have estimators of the shadow energy
available, it is of interest to estimate the temperature obtained
using the difference of the shadow energy and the potential
energy. With the definition kBT H-U/2 ) 〈Hδt〉 - 〈kq2/2〉, we
find

showing that the difference of the shadow energy and potential
energy yields a temperature estimator with errors of order δt

2.

H0
osc(p, q) ) 1

2
kq2 + p2

2m
(18)

Hδt

osc(p, q) ) 1
2

kδt
q2 + p2

2mδt

(19)

mδt

m
) ω

ωδt
�1 - (1

2
ωδt)2

≈ 1 - 1
6

(ωδt)
2 (20)

kδt

k
)

ωδt

ω �1 - (1
2

ωδt)2
≈ 1 - 1

12
(ωδt)

2 (21)

ωδt

ω
)

arcsin(1
2

ωδt)
1
2

ωδt

≈ 1 + 1
24

(ωδt)
2 (22)

TpV

T
) 1;

Tp2

T
)

mδt

m
;

TV2

T
) m

mδt

(23)

Tqṗ

T
) 1;

TqF

T
) k

kδt

(24)

TH-U

T
) 2 - k

kδt

(25)
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3. Simulation and Analysis Details

All simulations were performed using Desmond.32 Periodic
boundary conditions were used, and center-of-mass motion
was removed every time step. Every picosecond, coordinates,
and velocities were saved for nine consecutive time steps to
allow interpolation. Since we wish to isolate truncation errors
from round-off errors, Desmond and analysis programs used
double-precision arithmetic. Energy drift was small: even
assuming it is converted entirely into kinetic energy, the drift
over the entire length of each NVE simulation corresponds
to a temperature change of less than 0.2 K. All errorbars
denote statistical errors, which were estimated using a
blocking method.33

3.1. Diatomic Fluid. The simulated system contained
1000 oxygen-like diatomic molecules of 32 atomic mass units
in a cubic box with a side length of 44.42 Å. The force field
contained only two kinds of terms, each a simple function
of interatomic distance r: intramolecular bond stretch terms
of the form k(r - r0)2/2, and van der Waals interactions of
Lennard-Jones form 4ε[(σ/r)12 - (σ/r)6] between atoms on
different molecules; there were no electrostatic interactions.
Most parameters (r0 ) 1.15 Å, σ ) 2.9 Å, and ε ) 0.586152
kJ/mol) were taken to be the OPLS-AA/L force field34 values
for oxygen. The bond force constant was reduced by
approximately a factor of six from the OPLS-AA/L value
for oxygen to k ) 1368 kJ/mol/Å2, which corresponds to a
lengthened bond-vibration period of 48.05 fs. These param-
eters ensure that energy transfer between the high-frequency
vibrations and the other motions is rapid (equipartition is
reached in hundreds of ps). The van der Waals interactions
were truncated at 10 Å and calculated using a neighbor list
of pairs within 11.25 Å that was updated every ∼15 fs. We
performed 10 NVE simulations of 400 ns using the velocity-
Verlet integration scheme with time steps ranging from 0.5
to 5 fs. We also performed 9 NVE simulations of 400 ns
using the r-RESPA integrator20 with bond stretches calculated
every 0.5 fs and with intermolecular interactions between 2
and 10 times less frequently. All simulations started from
the same configuration (which had been pre-equilibrated
using a thermostat at 300 K) and were each assigned different
initial velocities that were randomly chosen from a
Maxwell-Boltzmann distribution.

3.2. Ubiquitin. The set up and parameters for the ubiquitin
simulations were similar to those used previously.35 PDB
entry 1D3Z36 was solvated with 5302 explicit water mol-
ecules, giving a total of 17 137 atoms in a cubic box of side
55.71 Å. We used the OPLS-AA/L all-atom force field,34

as implemented in GROMACS version 3.1.4,37 for the
protein, together with the SPC water model.38 Electrostatic
forces were computed using the particle mesh Ewald
method39 with a screening Gaussian width of 10/(3�2) ≈
2.36 Å and with fifth-order interpolation to a cubic mesh of
64 × 64 × 64 points; real-space contributions to the
electrostatics and van der Waals interactions were truncated
at 10 Å and calculated from a list of pairs separated by less
than 11 Å that was assembled every ∼12 fs. Water molecules
and lengths of bonds to hydrogens were rigidly constrained
using M-SHAKE,40 as implemented41 in Desmond. Energy

minimization and equilibration under conditions of constant
temperature and pressure yielded a conformation, from which
8 simulations of 11 ns were started. These simulations were
as follows: three NVE velocity-Verlet simulations with different
time steps (1.25, 2, and 2.5 fs); one NVE simulation using an
r-RESPA multiple time step scheme,20 in which nonbonded
interactions were evaluated every 2.5 fs and the remaining
interactions every 1.25 fs; four simulations using a velocity-
Verlet time step of 2 fs and coupled in different ways to
Berendsen thermostats30 with relaxation times of 0.5 ps (either
a single thermostat coupled to the entire system, or the protein
or water alone, or two independent thermostats with the first
coupled to the water and the second to the protein).

To calculate the temperature of the protein, T pV
protein, we

made use of eq 8, where i ran over all protein atoms and
Cartesian dimensions. The temperatures of the water and the
entire system, T pV

water and T pV
system, were calculated analogously.

The quantities T p2
protein

, T p2
water

, T p2
system

were calculated in the
same way, except that the interpolated velocity was replaced
by the corresponding momenta divided by the mass; this is
how temperatures of components are normally calculated in
simulation. We also calculated the analogous V2 quantities.
The position coordinates used for the quasiharmonic analysis
were center-of-mass coordinates of protein heavy atoms and
their covalently bonded hydrogen atoms. This gives a total
of 1800 position coordinates when overall rotation and
translation are excluded.

3.3. Interpolation. While positions and momenta are
directly available from the integrator at every time step, their
time derivatives are not, but can be estimated by interpola-
tion. Here we use straightforward polynomial interpolation.
For velocities, fitting an nth-order polynomial through the
positions at the time of interest and the following n/2 and
preceding n/2 times and taking the time derivative gives a
time-symmetric nth-order approximation to the velocities, v(n).
The second-order result

simply recovers the velocity-Verlet velocities. Higher-order
results may be expressed in terms of the velocity-Verlet
results at different time steps. For example

where

Rates of change of momenta were calculated by fitting
polynomials to successive momenta in an analogous manner.
The same procedure may be used in the presence of
constraints.

v(2)(t) ) (x(t + δt) - x(t - δt))/(2δt) (26)

v(4)(t) ) 1
6

(8k1 - k2) (27)

v(6)(t) ) 1
30

(45k1 - 9k2 + k3) (28)

v(8)(t) ) 1
420

(672k1 - 168k2 + 32k3 - 3k4) (29)

kn ) ∑
m)1

n

v(2)(t + (2m - n - 1)δt) (30)
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Although the interpolation error in v(n) is O(δt
n), there is

no guarantee of convergence as n increases. In practice,
however, interpolation error appears to rapidly diminish with
increasing n, for small n. This is illustrated in Figure 2, where
we show the root-mean-square (rms) temperature difference
between nth- and tenth-order estimates for protein degrees
of freedom in NVE simulations of ubiquitin. Specifically,
we calculate σT (n) which we define via

where i runs over all protein atoms and R over dimensions
x, y, and z. Unless otherwise stated, below we use eighth-
order interpolation, which is sufficient to make interpolation
error substantially smaller than statistical error in the results
we present. Figure 2 suggests that even for the large 2.5 fs
time step, eighth-order interpolation corresponds to typical
errors in temperature of an individual degree of freedom of
less than 0.1 K, and a fourth-order approximation is already
a substantial improvement over the second-order result. We
have also found interpolation to be useful for trajectories
generated by the commonly used r-RESPA method, albeit
with slower convergence when tested with outer time steps
in the 4-6 fs range (data not shown).

Finally, polynomial fits through positions at times t + δt

and earlier are also possible (Figure 2). Although not time
symmetric, such interpolations may be useful for thermostats
because they have the advantage of giving improved accuracy
velocity estimates “on the fly.” In particular, the third-order
result recovers the velocities in Beeman’s implementation
of Verlet, ṽ(3)(t) ) (-v(2)(t - δt) + 2v(1/2)(t - δt/2) +
2v(2)(t))/3, where the half-step velocity is v(1/2)(t - δt/2) )
(x(t) - x(t - δt))/δt. Beeman’s algorithm is often used
instead of velocity Verlet or leapfrog when accurate velocities
are important, and Figure 2 shows the improvement over
the velocity-Verlet velocities.

4. Results

4.1. Diatomic Fluid. The diatomic fluid is a useful test
system, because it contains anharmonicities and motions of
different frequencies, yet is simple enough that approximation
errors can be estimated based on analytical harmonic
oscillator results. We performed velocity-Verlet simulations
with different time steps. These ranged up to 5 fs, or about
a tenth of the vibrational period of 48 fs. This range was
chosen because, in biomolecular simulations, time steps
of up to about a tenth of the fastest vibrational period are
in common use. (A time step of 2 fs is often chosen, for
example, in protein simulations in which bonds to
hydrogen are constrained; the fastest motionssangle
bending motions involving hydrogens and certain bond
stretchesshave periods of approximately 20 fs.) For each
time step, we calculated the ratio of vibrational and
translational temperatures. The translational temperature
depends on the center-of-mass velocities and momenta
{V, P}, while the vibrational temperature depends on {V, p}
(the rates of change of the bond lengths {r} and the
projections of relative momenta {pr} along the bonds,
respectively; see Appendix A):

The bar denotes an average over all Nmol molecules, and the
Nmol/(Nmol - 1) prefactor reflects the constraints on the center-
of-mass momenta arising from the conservation of the total
linear momentum. The atomic velocities were evaluated by
polynomial fitting. The center-of-mass and vibrational ve-
locities were calculated in terms of these interpolated
velocities. As shown in Figure 3, the ratio T pV

vib/T pV
trans is indeed

unity within statistical error, showing that generalized
equipartition is satisfied in the simulations.

The same ratio is shown on an enlarged y-scale in Figure
3a and compared to the results obtained using fourth, rather
than eighth, order interpolation for the velocities. The
observation that generalized equipartition holds, but appears
to be violated for larger time steps when the fourth-order
estimator is used, is consistent with the theoretical expecta-
tion that temperature can be estimated with errors that are
smaller (higher order) than O(δt

4).
We also calculated alternative temperature estimators,

starting with the typical p2 formulas:

where M and µ are molecular and reduced masses, respec-
tively. As seen in Figure 3, when calculated this way, the
vibrational (higher frequency) motion appears to be cooler.
In Figure 3, we also show the results of estimating the
temperature ratio using the V2 formulas (with accurate
velocity estimates):

Figure 2. Estimated velocity errors as a function of interpola-
tion order. The weighted rms velocity error defined in eq 31
is given in units of Kelvin. All points are from one of two NVE
simulations of ubiquitin. The simulation time step for the dark
circles was 1.25 fs and for the lighter triangles was 2.5 fs.
The lines are just guides to the eye. The solid points are time-
symmetric interpolations, and the open points with n ) 3 are
the time-asymmetric (Beeman) interpolations described in the
text.

σT
2(n) ) 1

kB
2Nf

∑
i,R

〈(piR(ViR
(n) - ViR

(10)))2〉δt
(31)

kBTpV
trans )

Nmol

Nmol - 1
〈P · V〉δt

kBTpV
vib ) 〈pV〉δt

(32)

kBTp2
trans )

Nmol/M

Nmol - 1
〈P · P〉δt

, kBTp2
vib ) 〈p2/µ〉δt

(33)

kBTV2
trans )

NmolM

Nmol - 1
〈V · V〉δt

, kBTV2
vib ) 〈µV2〉δt

(34)
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In this case, the higher frequency motion appears hotter.
The magnitude of the deviations from conventional
equipartition that are revealed using eqs 33 and 34 are
also seen to be well predicted using the harmonic oscillator
results of Section 2.4.

As shown in Appendix A, T qṗ
vib, defined by

is also essentially equal to the vibrational temperature. We
calculated T qṗ

vib in terms of the bond vectors {r} and the
molecular angular momenta and velocities {L, ω} using the
identity rṗ ≡ r · ṗr + L ·ω, with pr and the atomic velocities
contained in ω obtained from interpolation. Additionally, we
calculated the analogous, but approximate, temperature
estimator T qF

vib (Appendix B). Figure 3b shows that T qṗ
vib is

the same as the translational temperature within statistical
error, consistent with generalized equipartition being satisfied.
In contrast, the T qF

vib estimator leads to hotter temperatures
for the vibrational (i.e., higher frequency) motion. This
deviation can again be understood in terms of the harmonic
oscillator results. T qF is relevant to pressure computations,
as described in Appendix B. We find that the average
pressure calculated using a p2 expression for the ideal part
and a virial part calculated in the usual manner13 depends
on whether a molecular or atomic expression is used. For
the smallest (0.5 fs) time step, the molecular and atomic
results are the same within statistical error of 0.5 bar, but
for the largest (5 fs) time step they differ by 17.8 ( 0.4 bar,
which is close to the 17.0 bar predicted by eq 44.

Although eqs 33 and 34 are less accurate than eq 32 for
estimating temperature, the deviations from conventional
equipartition that they reveal do reflect real differences
between the shadow Hamiltonian and H0. They thus provide
a warning that truncation errors may affect other quantities.
We find vibrational frequencies and the magnitude of bond
length fluctuations to change, for example, by approximately
2% over the range of time steps studied, as would be
expected on the basis of the harmonic oscillator results. One
straightforward way to reduce truncation errors is to use a
multiple-time-step scheme, where the stiff-bonded forces are
evaluated more frequently than the softer intermolecular
interactions. Since the intermolecular interactions usually
dominate the computational expense, this approach often only
has modest cost. Figure 3c shows the vibrational to trans-
lational temperature ratios for the pV and p2 estimators from
r-RESPA simulations of the diatomic fluid as a function of
the outer time step. The intermolecular interactions were
calculated on the outer time step, while the bonded interac-
tions were evaluated every 0.5 fs. The agreement between
the estimators is excellent even for large outer time steps;
the V2 estimator (not shown) is also in agreement with the
other estimators.

4.2. Ubiquitin. As described in Appendix A, it is straight-
forward to calculate the temperature of different quasihar-
monic motions of a protein. We have done this for different
simulations of ubiquitin solvated in water. Initially, we
performed NVE simulations with differing values of δt. We
calculated the temperature T pV

(i) using eq 40 for all quasihar-

Figure 3. Equipartition for the diatomic fluid over a range of integration time steps. The main figure and insets (a) and (b) show
the time-step-dependence of the ratio of different estimates (based on eqs 32-35) of the vibrational and translational temperatures
for the same velocity-Verlet simulations. Lines show the harmonic oscillator results (eqs 20-24), with the dashed lines denoting
asymptotes that only include terms up to (ω0δt)2. The main figure shows that, with the pv estimator, the ratio T vib/T trans is one
within error, indicating that generalized equipartition is achieved in the simulations. The p2 estimator (blue) gives a ratio less
than one, making the vibrational motions appear cooler, whereas the v2 estimator gives a ratio greater than one. Inset (a) shows
only the results of the pv estimator in a region close to T vib/T trans ) 1. The red points are identical to those in the main figure,
and the purple circles show the result of using velocities obtained from a lower-order polynomial interpolation (fourth rather than
eighth). Inset (b) shows that the qṗ estimator gives a temperature ratio close to one, confirming generalized equipartition is
satisfied, but that the qF estimator (see main text) makes the vibrations appear hotter. Inset (c) shows the result of the pv and
p2 estimators for r-RESPA simulations (with a fixed inner time step of 0.5 fs) as a function of the outer time step.

-kBTqṗ
vib ) 〈rṗ〉δt

(35)
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monic modes i. As shown in Figure 4a-c, which corresponds
to time steps of 1.25, 2, and 2.5 fs, T pV

(i) is essentially
independent of i. This strongly suggests that generalized
equipartition is indeed achieved in these simulations. We also
estimated temperatures using kBT p2

(i)
) 〈pi

2〉δt. This estimate
varies substantially by mode and, as expected, is significantly
lower for higher-frequency motions. The deviation from
conventional equipartition increases with the size of the time
step (Figure 4). We also find T V2

(i)
) 〈Vi

2〉δt/kB to have a strong
but opposite dependence on mode (not shown). Note that
all three estimates agree well for the low-frequency motions.
Since the V2 formulas are found to overestimate temperature
by approximately as much as the p2 formula underestimates
it, we just discuss the pV and p2 results below.

It is natural to try to reduce the truncation errors signaled
by the breakdown of conventional equipartition. As noted
above, one approach is to use a multiple-time-step method.
In Figure 4d, we show the results of using the r-RESPA
method with bonded forces calculated every 1.25 fs and with
nonbonded interactions every 2.5 fs. The magnitude of the
discrepancy between T pV

(i) and T pp
(i) is reduced to an amount

similar to the 1.25 fs time step velocity-Verlet simulation.
This is because the highest frequency motions are bond
vibrations and angle-bending motions that involve hydrogen
atoms. The r-RESPA solution is inexpensive, if calculating
the bonded interactions takes a relatively small part of the
overall computation time, which is typically the case.

If a thermostat is applied to the system and the instanta-
neous temperatureswhich determines thermostat, and hence
particle, dynamicssis estimated using the p2 formula, then
integration errors may be amplified. A common, if fairly
innocuous, case is illustrated in Figure 4e, where a single
Berendsen thermostat is applied to the entire system. The

temperature as a function of mode is very similar to the NVE
simulation with the same (2 fs) time step. There is a small
discrepancy between the system temperature (301.76 ( 0.02
K) and the target temperature of 300 K. The discrepancy
reflects the fact that the p2 formula slightly underestimates
the water temperature (T p2

water < T pV
water).

Water models used in biomolecular simulation are often
rigid, so the highest frequency motions are in the protein.
Thus, although with the p2 formula the water may only
appear a degree or two cooler than the true value, the protein
may appear substantially cooler, leading to an apparent
temperature difference, ∆T p2 ≡ T p2

water
- T p2

protein
. In the NVE

simulations with a 2 fs time step, for example, ∆T p2 ) 5.6
( 0.1 K, and this rises to 8.9 ( 0.2 K for a 2.5 fs time step,
whereas the accurately calculated temperature difference
∆T pV ≡ T pV

water - T pV
protein is 0 within error in both cases; see

Table 1). If the symptom of truncation error revealed by the
p2 estimator is combatted by applying two thermostats
simultaneouslysone to protein and one to solventsthen
larger errors result than in the case of a single system-wide
thermostat. This is not due to an intrinsic problem with the
use of multiple thermostats, which can be used safely if an
appropriate time step is chosen. Rather, the relatively large
time steps commonly chosen in MD simulations for ef-

Figure 4. Temperature as a function of mode number i for ubiquitin. The modes are ordered by mean-square fluctuation,
with the largest-amplitude (lowest-frequency) motions to the left. The temperatures are averages over 50 consecutive
modes. The dark circles show the results of the pv formula (eq 40), and the light triangles are the results of the corresponding
p2 formula. Panels (a-c) show the results of NVE simulations with time steps of 1.25, 2, and 2.5 fs. Panel (d) shows
results of the NVE simulation using a r-RESPA multiple time step method. Panel (e) shows the results when the entire
system is coupled to a single thermostat, whereas panel (f) shows the results of simultaneously applying independent
thermostats to water and protein.

Table 1. Water-Protein Temperature Differences from p2

and v2 Estimators for NVE Simulationsa

time step/fs ∆T p2 ∆T pv

1.25 2.11 -0.11
2.0 5.62 -0.06
2.5 8.91 -0.08

a Temperature differences are expressed as ∆T ) T water -
T protein in Kelvin. Statistical errors are approximately 0.1 to 0.2 K.
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ficiency lead to errors that can be amplified by certain choices
of thermostat. For our simulation with a 2 fs time step and
two thermostats, we find that T pV

protein ) 306.3 ( 0.1 K,
whereas T pV

water ) 301.35 ( 0.02 K; in addition T pV
(i) is no

longer approximately constant (Figure 4f). This signals a
breakdown of generalized equipartition. Energy flows from
one thermostat to the protein, then transfers to the water,
and is finally removed by the other thermostat. Applying a
single thermostat to the system, but just coupling it to a subset
of the particles, should not lead to a breakdown of general-
ized equipartition, although if the component contains high-
frequency motions, then this can lead to a substantial error
in the system temperature. For example, we find that coupling
a single thermostat to the protein leads to a simulation
temperature about 7 K above the target temperature; see
Table 2. We stress that the underlying cause of these
problems is truncation error, not a problem with the
thermostat itself.

5. Discussion and Conclusions

In this paper, using the established concepts of generalized
equipartition and the shadow Hamiltonian, we have intro-
duced a clear definition of simulation temperature that
explicitly takes into account the finite simulation time step.
We have shown that this temperature can be evaluated
accurately and straightforwardly in practice. We tested
generalized equipartition in numerical examples relevant
to biomolecular simulation in which truncation errors lead
to deviations from conventional equipartition and thus to
different temperature estimates for different motions when
conventional estimators are used. We confirmed that general-
ized equipartition is in fact satisfied in these examples, with
different motions sharing a single well-defined simulation
temperature.

The observation that generalized equipartition can be
satisfied even for rather large time steps naturally does not
imply that the simulations are free from artifacts due to
truncation error, but it does help highlight the actual nature
of the errors. As signaled by the breakdown of conventional
equipartition, the shadow Hamiltonian differs from the
Hamiltonian that we wish to simulate by an amount O(δt

2),
and thus their dynamics and thermodynamics will differ too.

One practical benefit of obtaining accurate temperature
estimates, even when the Hamiltonian itself is subject to
O(δt

2) errors, is that testing generalized equipartition can be

a valuable simulation diagnostic. A violation of equipartition
demonstrated using the methods of this paper points to
underlying problems with the integration scheme, as in the
two-thermostat example described above. A second practical
benefit is that accurately estimating the temperature can
remove what may be the largest source of error in the
description of low-frequency motions, as we now briefly
explain. Low-frequency motions are often of greatest interest,
and by their nature, most error in their description comes
via their coupling to higher-frequency motions, which present
more of a challenge to the integrator. If high- and low-
frequency motions are weakly coupled, as expected for bond
vibrations and larger-scale protein conformational change,
for example, the low-frequency dynamics should be ac-
curately described by the integrator. Error in the estimated
temperature can then become the dominant error in the
overall description of the low-frequency motion, because the
temperatureswhen computed as a sum over all atomic
motions using the p2 formulasis polluted by errors due to
the fast motions.

Our results also make clear that for Verlet integration,
estimating the temperature using the V2 formula leads to
O(δt

2) errors even if the velocities could be computed
exactly. A corollary is that Beeman’s version of Verlet, which
gives velocities with only O(δt

3) errors, will still yield
temperatures with O(δt

2) errors if those temperatures are
estimated using a V2 formula, as is conventional when using
this integrator. Most simulations use some form of temper-
ature control, and an inaccurate estimated temperature can
affect the dynamics through the thermostat (or barostat).
Fortunately, for the common case of a small globular protein
solvated by constrained water molecules and coupled to a
single system-wide thermostat, the resultant errors will be
small because the fastest motions are in the protein, which
comprises only a small part of the system. Care might be
needed if the system contains a larger fraction of high-
frequency motions, as would be the case in a simulation of
a protein crystal or a lipid bilayer or in a simulation using
an unconstrained water model. Clearly, systems that are
particularly sensitive to temperature and pressure are more
likely to exhibit substantial artifacts. Systems near a phase
transition, for example, need more care; under ambient
conditions, such systems include certain lipid bilayers and
marginally stable small peptides and proteins.

For the simulation thermostat to accurately control tem-
perature, it would be desirable to calculate the instantaneous
temperature using the pV formula. We have shown that
improved estimates of temperature at a given time are
possible using information that can in principle be made
available by the integrator (see the non-time-symmetric
interpolation in Figure 2). Although constructing a thermostat
along these lines is possible, this may not be the most
promising approach. In addition to breaking time reversibil-
ity, such a thermostat would require the MD code to retain
information about particle positions from earlier time steps,
thereby adding complexity and likely reducing performance
of a parallel code. One simple way to side-step these issues
may be to continue to use the p2 formula but to couple the
thermostat to lower-frequency motions. This approach does

Table 2. Estimated Component Temperatures for NVT
Simulations Performed with Different Thermostatsa

thermostat T p2
system

T p2
water

T p2
protein

T pv
system T pv

water T pv
protein

one (system) 299.97 300.47 294.80 301.76 301.76 301.78
one (water) 299.49 299.97 294.55 301.28 301.26 301.52
one (protein) 305.02 305.50 300.03 306.84 306.81 307.14
two (protein,
water)

299.98 300.05 299.18 301.78 301.35 306.30

a Temperatures are in Kelvin. The target temperature was 300.0 K
in all simulations. The simulations differ only in the number of
thermostats (one or two) and the atoms to which the thermostats
are coupled. Statistical errors are approximately 0.1 to 0.2 K for
protein temperatures and 0.02 to 0.04 K for water/system
temperatures.
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not remove O(δt
2) errors from the p2 temperature estimate,

but it can substantially reduce the prefactor. In our NVE
ubiquitin simulations, for example, we find the error in T p2

water

to be reduced by a factor of over five when it is calculated
from translational motion only, rather than translational and
rotational. This suggests that coupling a single thermostat
to the translational motion of water molecules may be a
useful approach.

Our results warn against combining multiple thermostats
with large time steps. With a properly chosen time step,
multiple thermostats can be a valuable tool to ensure
equilibration even when equipartitioning is slow.42 Applica-
tion of multiple thermostats was also once useful to control
very large hot solvent-cold solute artifacts, such as can occur
when cutoff electrostatics are used. The improvements in
methodology and computer codes over the last 15-20 years,
however, have led to a situation where the dominant
deviations from conventional equipartition are truncation
errors and the generalized equipartition is satisfied. In such
a situation, using multiple thermostats to rectify the deviation
from conventional equipartition will have the counterproduc-
tive effect of causing true temperature imbalances in the
system. Although in this paper we reported results obtained
with the Berendsen thermostat, we have also found very
similar results in tests with a Nosé-Hoover thermostat.
Caution may also be required when combining stochastic
thermostats with large time steps (particularly if the ther-
mostat relaxation time is short), because such thermostats
are typically coupled to many individual degrees of freedom
(as in Langevin dynamics, for example).

The simplest way to reduce truncation error is obvious:
reduce the time step. In practice, there is often reluctance to
do this, in part because of the large computational expense
of simulations and in part because of the fact that, while
artifacts undeniably exist, their direct impact is largest on
fast motions and their effect on properties likely to be of
interest in long-time-scale simulations is much less clear.
Indeed, partly motivated by the observation that even the
large commonly used time steps (of about a tenth of the
period of the fastest motions) are approximately a factor of
three below the stability limit of velocity Verlet, some authors
have suggested increasing the time step further.43,44 By
showing that generalized equipartition can hold even for time
steps somewhat beyond the commonly used range, our results
lend some support to this idea. On the other hand, regardless
of whether generalized equipartition is satisfied, truncation
errors will affect simulation results, and it is difficult to assess
the impact on properties of interest in complicated biological
systems. Thus, a more promising approach to balancing
accuracy and efficiency may be to change the integrator.
Results for both our test systems highlighted the effectiveness
of the r-RESPA integrator for reducing errors at little cost;
such an approach is likely to be useful for biomolecular
simulation, since the fast motions that are the major source
of truncation error are usually inexpensive to calculate and
can thus be calculated with a reduced time step at little cost.
In some cases, in particular on specialized hardware that
greatly accelerates nonbonded interactions,45 a substantial
fraction of time may be spent on bonded interactions. In

future work, we will describe new integrators that increase
accuracy efficiently in such cases.

Appendix A

Alternative Coordinate Systems. It can be helpful to
calculate temperatures for different modes of motion, such
as the collective motions of a large subset of atoms. In
principle, a straightforward recipe to do this is to identify a
canonical transformation between the Cartesian atomic
coordinates and conjugate momenta and a set of coordinates
of interest. If this can be done, generalized equipartition
should then hold for the new variables, which can be
evaluated in terms of the atomic coordinates and momenta
provided by the integrator. Time derivatives of the general-
ized coordinates may be obtained using interpolation. We
illustrate with two examples relevant to the systems studied
in this paper.

Translation, Vibration, and Rotation for a Diatomic
Molecule. Consider a diatomic molecule, which may be part
of a larger system, that consists of atoms A and B with mass
mA and mB, respectively. The transformation from the atomic
positions and momenta (qA, qB, pA, pB) to center-of-mass
and relative positions and momenta (R ) (mAqA + mBqB)/
M, r ≡ (x, y, z) ) qB - qA, P ) pA + pB, pr ≡ (pr;x, pr;y, pr;z)
) µ(pB/mB - pA/mA)), where M ) mA + mB and 1/µ )
1/mA + 1/mB, is canonical. So is the further transformation
of the relative motion into vibrational and rotational motion
(r ) |r|, θ ) arccos (z/r), φ ) arctan (y/x), p ) pr · r/r, lθ )
-(x2 + y2)1/2pr;z + (xpr;x + ypr;y)z/(x2 + y2)1/2, lφ ) xpr;y -
ypr;x). Generalized equipartition relations may thus be written
for translational and internal motion and for rotational and
vibrational contributions to the internal motion:

Here V ) Ṙ, vr ) ṙ, V ) ṙ, and we have identified L ·ω ≡
lθθ̇ + lφφ̈, where by definition L ) r × pr and ω ) r ×
vr/r2 as usual. Likewise, using eq 3, we have the additional
expressions for the total internal and the vibrational motion:

which are valid even with periodic boundary conditions (in
the unlikely situation that the bond length can exceed half
the simulation box length, care must be taken not to
incorrectly wrap the relative position coordinate). Replace-
ment of ṗr in the above formula with the analogously defined
relative force

where FA ) -∂U/∂qA denotes an atomic force, would be an
approximation for finite integration time steps.

The generalized equipartition formulas obtained in this
section are very familiar in the case δt f 0; the formal
reasoning here makes clear that they should also apply to

1
3

〈P · V〉δt
) 1

3
〈pr · vr〉δt

) kBT (36)

1
2

〈L · ω〉δt
) 〈pV〉δt

) kBT (37)

1
3

〈r · ṗr〉δt
) 〈rṗ〉δt

) -kBT (38)

Fr ) µ(FB/mB - FA/mA) (39)
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the shadow Hamiltonian and thus hold in simulation,
provided that the time derivatives that they contain can be
accurately estimated.

Quasiharmonic Motions of a Protein. Quasiharmonic
analysis and principal component analysis are popular closely
related methods for analyzing protein motions46 and have
occasionally been used in the context of equipartition.47 The
basic approach can often be decomposed into three trans-
formations: First, and optionally, the protein atoms or
some subset are mass-weighted (q0, p0) f (q1 )
m1/2q, p1 ) m-1/2p); then these coordinates are transformed
by means of a q1-dependent overall translation and rotation
to minimize the root-mean-square deviation (rmsd) of q1 to
a reference structure, (q1, p1) f (q2 ) ArotÂtransq1, p2 )
Arotp1); finally, an orthogonal transformation (q2, p2) f (q′
) RTq2, p′ ) RTp2) makes the covariance matrix 〈(q′ -
〈q′〉)(q′ - 〈q′〉)T〉δt ) RT〈(q2 - 〈q2〉)(q2 - 〈q2〉)T〉δtR diagonal.
Motion along a subset of the q′ coordinates with the largest
eigenvalues often correspond to interesting fluctuations of
the protein around its native state. It is natural to define a
temperature for mode i via

(or 〈q′iṗ′i〉δt ) kBT qṗ
(i)), where V′i ) q̇′i. Unfortunately, although

the first and last transformations above are canonical, the
momenta generated in the rmsd-fitting step are only ap-
proximations to the true conjugate momenta. We thus expect
T pV

(i) to differ slightly from T. In practice, we expect this
discrepancy to be small for an ordered protein with a large
number of degrees of freedom, and we neglect it.

Appendix B

Pressure. We show here, by means of a simple example,
that the equivalence of atomic and molecular definitions of
the simulation pressure for δt > 0 may be viewed as a
consequence of generalized equipartition and that this
equivalence is broken, if the virial is computed in the normal
way and the temperature is evaluated using a p2 (or indeed
pV or V2) estimate. Although it is straightforward to obtain
exact expressions for the simulation pressure, we have not
found a practical method to estimate it from simulation data
in a way that is as simple as evaluating the simulation
temperature. Our results suggest that using a pV estimate for
temperature will reduce pressure errors relative to a p2

estimate but not eliminate them. This is consistent with the
work of Pastor et al., who demonstrated that a different
estimator of temperature (derived from Verlet velocities from
the previous half-step) leads to exact estimates of pressure
for a harmonic oscillator (unlike the use of p2, pV, or V2

estimates) due to a favorable cancellation of errors.48

In the canonical ensemble, starting from the thermody-
namic definition of pressure as a volume derivative of the
free energy, P ) -∂F/∂V, it is straightforward to express
the simulation pressure as a sum of kinetic and virial
contributions. Assuming periodic boundary conditions and
no constraints and viewing the Hamiltonian as a function of
atomic positions and momenta, one obtains the atomic
expression:

In terms of molecular center-of-mass positions and momenta
{R, P}, and relative coordinates {r, pr}, the following
molecular expression is more natural:

Nmol denotes the number of molecules, and N denotes the
number of atoms. The two expressions are equivalent, but
this equivalence can be broken by the (approximate) method
used to compute the temperature and virial, as we explain
by means of a simple example.

Consider an ideal diatomic gas with some intramolecular
bonded interaction but negligible intermolecular interactions.
Since the molecular virial vanishes, the molecular pressure
formula immediately yields the correct result, PV ) NmolkBT.
(Assuming that the T appearing in the molecular pressure is
obtained from the kinetic energy of molecular center-of-mass
motion, T will be estimated correctly for this idealized system
regardless of whether a pV or p2 formula is used, provided the
integratorslike velocity Verletspreserves translational invari-
ance.) We find that the atomic virial of our ideal system reduces
to (Nmol/3)〈r · ṗr〉δt, where the overbar simply denotes an average
over all molecules. If generalized equipartition (eq 38) holds,
then the atomic virial further reduces to - NmolkBT and thus
precisely cancels half of the kinetic term, yielding the correct
pressure. The natural approach to computing the pressure when
using velocity-Verlet integration, however, is to estimate T from
the atomic momenta using a p2 formula and from the atomic
virial using (Nmol/3)〈r · (- ∂U/∂r)〉δt. (This is essentially the
approach implemented in Desmond,32 for example.) Then we
find that the atomic pressure differs from the molecular pressure
according to

where the two different approximations to the vibrational
temperatures are T p2

vib
) 〈p2/µ〉δt, and T qF

vib ) 〈rFeff〉δt. The
effective force includes a centrifugal term and is defined via
rFeff ) r ·Fr + L ·L/(µr2), with Fr defined in eq 39.

Equation 43 depends on the details of the intramolecular
interaction, but if we assume that the effective intramolecular
potential, i.e., with a L2/(2µr2) centrifugal term included, is
approximately harmonic, then we may use the results of
Section 2.4 to yield

Using the atomic formula, in the way described above, will
thus underestimate the simulation pressure. For a time step

〈p′iV′i〉δt
) kBTpV

(i) (40)

P ) N
V

kBT - 〈(∂Hδt
(p, q, V)

∂V )
p,q

〉
δt

(41)

P )
Nmol

V
kBT - 〈(∂Hδt

({P, R, pr, r}, V)

∂V )
{P,R,pr,r}〉δt

(42)

(Pmol
ideal - Patom

ideal)V ) 1
3

NmolkB(TqF
vib - Tp2

vib) (43)

(Pmol
ideal - Patom

ideal)V ) 1
3

NmolkBT( k
kδt

-
mδt

m )
≈ 1

3
NmolkBT( 1

12
(ωδt)

2 + 1
6

(ωδt)
2)

) NmolkBT
(ωδt)

2

12
(44)
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of ωδt ) 0.6, the overall error in the atomic pressure is 3%
of the ideal gas value. For condensed-phase systems under
ambient conditions, similar errors could easily dominate
the pressure, which is itself the difference of two large
almost canceling terms. For compressible systems, such
as membranes, this is cause for caution. Using a molecular
(or group-based) pressure is one obvious way to reduce
errors (in our simple example, this approach eliminates
errors). Alternatively, or in addition, the temperature
estimate could be improved. Since two-thirds of the error
in the atomic pressure estimate originates in the temper-
ature estimate and one-third from the virial estimate, use
of a perfect estimate of temperature will improve the
pressure estimate but will not eliminate errors. As noted
above, however, Pastor et al. have shown how the
temperature estimate may be changed to cancel errors
arising from the virial part, thus providing an even more
accurate pressure estimator; this method is available in
CHARMM.27
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